source: trunk/src/testing/app/fluidsGL/fluidsGL_kernels.h @ 4

Revision 4, 2.6 KB checked in by ajaworski, 13 years ago (diff)

Added modified SAGE sources

Line 
1/*
2 * Copyright 1993-2009 NVIDIA Corporation.  All rights reserved.
3 *
4 * NVIDIA Corporation and its licensors retain all intellectual property and
5 * proprietary rights in and to this software and related documentation and
6 * any modifications thereto.  Any use, reproduction, disclosure, or distribution
7 * of this software and related documentation without an express license
8 * agreement from NVIDIA Corporation is strictly prohibited.
9 *
10 */
11#ifndef __STABLEFLUIDS_KERNELS_H_
12#define __STABLEFLUIDS_KERNELS_H_
13
14// Vector data type used to velocity and force fields
15typedef float2 cData;
16
17void setupTexture(int x, int y);
18void bindTexture(void);
19void unbindTexture(void);
20void updateTexture(cData *data, size_t w, size_t h, size_t pitch);
21void deleteTexture(void);
22
23// This method adds constant force vectors to the velocity field
24// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
25__global__ void
26addForces_k(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r, size_t pitch);
27
28// This method performs the velocity advection step, where we
29// trace velocity vectors back in time to update each grid cell.
30// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
31// interpolation in the velocity space.
32__global__ void
33advectVelocity_k(cData *v, float *vx, float *vy,
34                 int dx, int pdx, int dy, float dt, int lb);
35
36// This method performs velocity diffusion and forces mass conservation
37// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
38// arrays holding the Fourier coefficients of the velocity field in
39// X and Y. Diffusion in this space takes a simple form described as:
40// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
41// and k is the wavenumber. The projection step forces the Fourier
42// velocity vectors to be orthogonal to the wave wave vectors for each
43// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
44__global__ void
45diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
46                 float visc, int lb);
47   
48// This method updates the velocity field 'v' using the two complex
49// arrays from the previous step: 'vx' and 'vy'. Here we scale the
50// real components by 1/(dx*dy) to account for an unnormalized FFT.
51__global__ void
52updateVelocity_k(cData *v, float *vx, float *vy,
53                 int dx, int pdx, int dy, int lb, size_t pitch);
54
55// This method updates the particles by moving particle positions
56// according to the velocity field and time step. That is, for each
57// particle: p(t+1) = p(t) + dt * v(p(t)). 
58__global__ void
59advectParticles_k(cData *part, cData *v, int dx, int dy,
60                  float dt, int lb, size_t pitch);
61
62#endif
63
Note: See TracBrowser for help on using the repository browser.