
DCworms - a tool for simulation of energy efficiency in

distributed computing infrastructures

K. Kurowskia, A. Oleksiaka, W. Piateka, T. Pionteka, A. Przybyszewskia,
J. Weglarza,b

aPoznan Supercomputing and Networking Center, Noskowskiego 10, Poznan, Poland
bInstitute of Computing Science, Poznan University of Technology,

Piotrowo 2, Poznan, Poland

Abstract

In the recent years, energy-efficiency of computing infrastructures has
gained a great attention. For this reason, proper estimation and evaluation
of energy that is required to execute data center workloads became an im-
portant research problem. In this paper we present a Data Center Workload
and Resource Management Simulator (DCworms) which enables modeling
and simulation of computing infrastructures to estimate their performance,
energy consumption, and energy-efficiency metrics for diverse workloads and
management policies. We discuss methods of power usage modeling available
in the simulator. To this end, we compare results of simulations to measure-
ments of real servers. To demonstrate DCworms capabilities we evaluate
impact of several resource management policies on overall energy-efficiency
of specific workloads executed on heterogeneous resources.

Keywords: simulations, workload and resource modeling, energy-efficiency,
data centers

1. Introduction

Rising popularity of large-scale computing infrastructures caused quick
development of data centers. Nowadays, data centers are responsible for
around 2% of the global energy consumption making it equal to the demand
of aviation industry [13]. Moreover, in many current data centers the actual
IT equipment uses only half of the total energy whereas most of the remain-
ing part is required for cooling and air movement resulting in poor Power
Usage Effectiveness (PUE) [29] values. Large energy needs and significant

Preprint submitted to Simulation Modelling Practice and Theory May 31, 2013



CO2 emissions caused that issues related to cooling, heat transfer, and IT
infrastructure location are more and more carefully studied during planning
and operation of data centers.

For these reasons many efforts were undertaken to measure and study
energy efficiency of data centers. There are projects focused on data cen-
ter monitoring and management [9][1] whereas others on energy efficiency
of networks [7]. Additionally, vendors offer a wide spectrum of energy effi-
cient solutions for computing and cooling [30][25][27]. However, a variety of
solutions and configuration options can be applied planning new or upgrad-
ing existing data centers. In order to optimize a design or configuration of
data center we need a thorough study using appropriate metrics and tools
evaluating how much computation or data processing can be done within
given power and energy budget and how it affects temperatures, heat trans-
fers, and airflows within data center. Therefore, there is a need for simula-
tion tools and models that approach the problem from a perspective of end
users and take into account all the factors that are critical to understanding
and improving the energy efficiency of data centers, in particular, hardware
characteristics, applications, management policies, and cooling. These tools
should support data center designers and operators by answering questions
how specific application types, levels of load, hardware specifications, physi-
cal arrangements, cooling technology, etc. impact overall data center energy
efficiency. There are various tools that allow simulation of computing infras-
tructures. On one hand they include advanced packages for modeling heat
transfer and energy consumption in data centers [28] or tools concentrating
on their financial analysis [6]. On the other hand, there are simulators fo-
cusing on computations such as CloudSim [4]. The CoolEmAll project aims
to integrate these approaches and enable advanced analysis of data center
efficiency taking into account all these aspects [3][26].

One of the results of the CoolEmAll project is the Data Center Workload
and Resource Management Simulator (DCworms) which enables modeling
and simulation of computing infrastructures to estimate their performance,
energy consumption, and energy-efficiency metrics for diverse workloads and
management policies. We discuss methods of power usage modeling available
in the simulator. To this end, we compare results of simulations to measure-
ments of real servers. To demonstrate DCworms capabilities we evaluate
impact of several resource management policies on overall energy-efficiency
of specific workloads executed on heterogeneous resources.

The remaining part of this paper is organized as follows. In Section 2

2



we give a brief overview of the current state of the art concerning modeling
and simulation of distributed systems, such as Grids and Clouds, in terms of
energy efficiency. Section 3 discusses the main features of DCworms. In par-
ticular, it introduces our approach to workload and resource management,
presents the concept of energy efficiency modeling and explains how to incor-
porate a specific application performance model into simulations. Section 4
discusses energy models adopted within the DCworms. In Section 5 we assess
the energy models by comparison of simulation results with real measure-
ments. We also present experiments that were performed using DCworms to
show various types of resource and scheduling technics allowing decreasing
the total energy consumption of the execution of a set of tasks. In Section 6
we explain how to integrate workload and resource simulations with heat
transfer simulations within the CoolEmAll project. Final conclusions and
directions for future work are given in Section 7.

2. Related Work

The growing importance of energy-efficiency in information technologies
led to significant interest in energy saving methods for computing systems.
Nevertheless, studies of impact of resource management policies on energy-
efficiency of IT infrastructures require a large effort and are difficult to per-
form in real distributed environments. To overcome these issues, extensive
research has been conducted in the area of modeling and simulation and
variety of tools that address the green computing have emerged. The most
popular ones are: GreenCloud [10], CloudSim [4] and DCSG Simulator [5].

GreenCloud is a C++ based simulation environment for studying the
energy-efficiency of cloud computing data centers. CloudSim is a simulation
tool that allows modeling of cloud computing environments and evaluation
of resource provisioning algorithms. Finally, the DCSG Simulator is a data
center cost and energy simulator calculating the power and cooling schema
of the data center equipment.

The scope of the aforementioned toolkits concerns the data center envi-
ronments. However, all of them, except DCworms presented in this paper,
restricts the simulated architecture in terms of types of modeled resources.
In this way, they impose the use of predefined sets of resources and rela-
tions between them. GreenCloud defines switches, links and servers that are
responsible for task execution and may contain different scheduling strate-
gies. Contrary to what the GreenCloud name may suggest, it does not allow

3



testing the impact of virtualization-based approaches. CloudSim allows cre-
ating a simple resources hierarchy consisting of machines and processors. To
simulate a real cloud computing data center, it provides an extra virtual-
ization layer responsible for the virtual machines (VM) provisioning process
and managing the VM life cycle. In DCSG Simulator user is able to take
into account a variety of mechanical and electrical devices as well as the IT
equipment and define for each of them numerous factors, including device
capacity and efficiency as well as the data center conditions.

The general idea behind all of the analyzed tools is to enable studies
concerning energy efficiency in distributed infrastructures. GreenCloud ap-
proach enables simulation of energy usage associated with computing servers
and network components. For example, the server power consumption model
implemented in GreenCloud depends on the server state as well as its uti-
lization. The CloudSim framework provides basic models to evaluate energy-
conscious provisioning policies. Each computing node can be extended with
a power model that estimates the current power consumption. Within the
DCSG Simulator, performance of each of the data center equipment (facility
and IT) is determined by a combination of factors, including workload, local
conditions, the manufacturer’s specifications and the way in which it is uti-
lized. In DCworms, the plugin idea has been introduced that offers emulating
the behavior of computing resources in terms of power consumption. Addi-
tionally, it delivers detailed information concerning resource and application
characteristics needed to define more sophisticated power draw models.

In order to emulate the behavior of real computing systems, green com-
puting simulator should address also the energy-aware resource management.
In this term, GreenCloud offers capturing the effects of both of the Dynamic
Voltage and Frequency Scaling (DVFS) and Dynamic Power Management
schemes. At the links and switches level, it supports downgrading the trans-
mission rate and putting network equipment into a sleep mode. CloudSim
comes with a set of predefined and extensible policies that manage the process
of VM migrations in order to optimize the power consumption. However, the
proposed approach is not sufficient for modeling more sophisticated policies
like frequency scaling techniques and managing resource power states. DCSG
Simulator is told to implement a set of basic energy-efficient rules that have
been developed on the basis of detailed understanding of the data center as
a system. The output of this simulation is a set of energy metrics, like PUE,
and cost data representing the IT devices. DCworms introduces a dedicated
interface that provides methods to obtain the detailed information about

4



each resource and its components energy consumption and allows changing
its current energy state. Availability of these interfaces in scheduling plu-
gin supports implementation of various strategies such as centralized energy
management, self-management of computing resources and mixed models.

In terms of application modeling, all tools, except DCSG Simulator, de-
scribe the application with a number of computational and communicational
requirements. In addition, GreenCloud and DCworms allow introducing the
QoS requirements by taking into account the time constraints during the
simulation. DCSG Simulator instead of modeling of the single application,
enables the definition of workload that leads to a given utilization level.
However, only DCworms supports application performance modeling by not
only incorporating simple requirements that are taken into account during
scheduling, but also by allowing specification of task execution time.

GreenCloud, CloudSim and DCworms are released as Open Source un-
der the GPL. DCSG Simulator is available under an OSL V3.0 open-source
license, however, it can be only accessed by the DCSG members.

Summarizing, DCworms stands out from other tools due to the flexibil-
ity in terms of data center equipment and structure definition. Moreover, it
allows to associate the energy consumption not only with the current power
state and resource utilization but also with the particular set of applica-
tions running on it. Moreover, it does not limit the user in defining various
types of resource management polices. The main strength of CloudSim lies
in implementation of the complex scheduling and task execution schemes
involving resource virtualization techniques. However, the energy efficiency
aspect is limited only to the VM management. The GreenCloud focuses on
data center resources with particular attention to the network infrastructure
and the most popular energy management approaches. DCSG simulator al-
lows taking into account also non-computing devices, nevertheless it seems
to be hardly customizable to specific workloads and management policies.

3. DCworms

The following picture (Figure 1) presents the overall architecture of the
simulation tool.

Data Center workload and resource management simulator (DCworms) is
a simulation tool based on the GSSIM framework [11] developed by Poznan
Supercomputing and Networking Center (PSNC). GSSIM has been proposed
to provide an automated tool for experimental studies of various resource

5



Figure 1: DCworms architecture

management and scheduling strategies in distributed computing systems.
DCworms extends its basic functionality and adds some additional features
related to the energy efficiency issues in data centers. In this section we
will introduce the functionality of the simulator, in terms of modeling and
simulation of large scale distributed systems like Grids and Clouds.

3.1. Architecture

DCworms is an event-driven simulation tool written in Java. In general,
input data for the DCworms consist of workload and resources descriptions.
They can be provided by the user, read from real traces or generated using the
generator module. In this terms DCworms benefits from the GSSIM work-
load generator tool that allows creating synthetic workloads ([11]). However,
the key elements of the presented architecture are plugins. They allow the re-
searchers to configure and adapt the simulation environment to the peculiari-
ties of their studies, starting from modeling job performance, through energy
estimations up to implementation of resource management and scheduling
policies. Each plugin can be implemented independently and plugged into
a specific experiment. Results of experiments are collected, aggregated, and
visualized using the statistics module. Due to a modular and plug-able archi-
tecture DCworms can be applied to specific resource management problems
and address different users requirements.

6



3.2. Workload modeling

As it was said, experiments performed in DCworms require a description
of applications that will be scheduled during the simulation. As a primary
definition, DCworms uses files in the Standard Workload Format (SWF) or
its extension the Grid Workload Format (GWF) [21]. In addition to the SWF
file, some more detailed specification of a job and tasks can be included in an
auxiliary XML file. This form of description extends the basic one and pro-
vides the scheduler with more detailed information about application profile,
task requirements, user preferences and execution time constraints, which
are unavailable in SWF/GWF files. To facilitate the process of adapting the
traces from real resource management systems, DCworms supports reading
those delivered from the most common ones like SLURM [22] and Torque
[24]. Since the applications may vary depending on their nature in terms of
their requirements and structure, DCworms provides user flexibility in defin-
ing the application model. Thus, considered workloads may have various
shapes and levels of complexity that range from multiple independent jobs,
through large-scale parallel applications, up to whole workflows containing
time dependencies and preceding constraints between jobs and tasks. Each
job may consist of one or more tasks and these can be seen as groups of
processes. Moreover, DCworms is able to handle rigid and moldable jobs,
as well as pre-emptive ones. To model the application profile in more de-
tail, DCworms follows the DNA approach proposed in [8]. Accordingly, each
task can be presented as a sequence of phases, which shows the impact of
this task on the resources that run it. Phases are then periods of time where
the system is stable (load, network, memory) given a certain threshold. Each
phase is linked to values of the system that represent a resource consumption
profile. Such a stage could be for example described as follows: 60% CPU,
30% net, 10% mem. Levels of information about incoming jobs are presented
in Figure 2.

This form of representation allows users to define a wide range of work-
loads: HPC (long jobs, computational-intensive, hard to migrate) or virtu-
alization (short requests) that are also typical for data center environments.

3.3. Resource modeling

The main goal of DCworms is to enable researchers evaluation of various
resource management policies in diverse computing environments. To this
end, it supports flexible definition of simulated resources both on physical
(computing resources) as well as on logical (scheduling entities) level. This

7



Figure 2: Levels of information about jobs

flexible approach allows modeling of various computing entities consisting
of compute nodes, processors and cores. In addition, detailed location of
the given resources can be provided in order to group them and arrange
into physical structures such as racks and containers. Each of the compo-
nents may be described by different parameters specifying available memory,
storage capabilities, processor speed etc. In this way, it is possible to de-
scribe power distribution system and cooling devices. Due to an extensible
description, users are able to define a number of experiment-specific and vi-
sionary characteristics. Moreover, with every component, dedicated profiles
can be associated that determines, among others, power, thermal and air
throughput properties. The energy estimation plugin can be bundled with
each resource. This allows defining various power models that can be then
followed by different computing system components. Details concerning the
approach to energy-efficiency modeling in DCworms can be found in the next
sections.

Scheduling entities allow providing data related to the brokering or queu-
ing system characteristics. Thus, information about available queues, re-
sources associated with them and their parameters like priority, availability
of advance reservation (AR) mechanism etc. can be defined. Moreover, al-

8



location policy and task scheduling strategy for each scheduling entity can
be introduced in form of the reference to an appropriate plugin. DCworms
allows building a hierarchy of schedulers corresponding to the hierarchy of
resource components over which the task may be distributed.

In this way, the DCworms supports simulation of a wide scope of physi-
cal and logical architectural patterns that may span from a single computing
resource up to whole data centers (even geographically distributed). In par-
ticular, it supports simulating complex distributed architectures containing
models of the whole data centers, containers, racks, nodes, etc. In addition,
new resources and distributed computing entities can easily be added to
the DCworms environment in order to enhance the functionality of the tool
and address more sophisticated requirements. Granularity of such topolo-
gies may also differ from coarse-grained to very fine-grained modeling single
cores, memory hierarchies and other hardware details.

3.4. Energy management concept in DCworms

The DCworms allows researchers to take into account energy efficiency
and thermal issues in distributed computing experiments. That can be
achieved by the means of appropriate models and profiles. In general, the
main goal of the models is to emulate the behavior of the real computing
resources, while profiles support models by providing data essential for the
energy usage calculations. Introducing particular models into the simulation
environment is possible through choosing or implementation of dedicated en-
ergy plugins that contain methods to calculate power usage of resources, their
temperature and system air throughput values. Presence of detailed resource
usage information, current resource energy and thermal state description
and a functional energy management interface enables an implementation
of energy-aware scheduling algorithms. Resource energy consumption and
thermal metrics become in this context an additional criterion in the re-
source management process. Scheduling plugins are provided with dedicated
interfaces, which allow them to collect detailed information about computing
resource components and to affect their behavior. The following subsection
presents the general idea behind the power management concept in DC-
worms. Detailed description of the approach to thermal and air throughput
simulations can be found in [15].

9



3.4.1. Power management

The motivation behind introducing a power management concept in DC-
worms is providing researchers with the means to define the energy efficiency
of resources, dependency of energy consumption on resource load and specific
applications, and to manage power modes of resources. Proposed solution
extends the power management concept presented in GSSIM [12] by offer-
ing a much more granular approach with the possibility of plugging energy
consumption models and power profiles into each resource level.

Power profile. In general, power profiles allow specifying the power usage
of resources. Depending on the accuracy of the model, users may provide
additional information about power states which are supported by the re-
sources, amounts of energy consumed in these states, and other information
essential to calculate the total energy consumed by the resource during run-
time. In such a way each component of IT infrastructure may be described,
including computing resources, system components and data center facilities.
Moreover, it is possible to define any number of new, resource specific, states,
for example so called P-states, in which processor can operate.

Power consumption model. The main aim of these models is to emu-
late the behavior of the real computing resource and the way it consumes
power. Due to a rich functionality and flexible environment description, DC-
worms can be used to verify a number of theoretical assumptions and to
develop new power consumption models. Modeling of power consumption is
realized by the energy estimation plugin that calculates energy usage based
on information about the resource power profile, resource utilization, and
the application profile including energy consumption and heat production
metrics. Relation between model and power profile is illustrated in Figure 3.

Power management interface. DCworms is complemented with an in-
terface that allows scheduling plugins to collect detailed power information
about computing resource components and to change their power states. It
enables performing various operations on the given resources, including dy-
namically changing the frequency level of a single processor, turning off/on
computing resources etc. The activities performed with this interface find a
reflection in total amount of energy consumed by the resource during simu-
lation.

Presence of detailed resource usage information, current resource energy
state description and functional energy management interface enables an im-

10



Figure 3: Power consumption modeling

plementation of energy-aware scheduling algorithms. Resource energy con-
sumption becomes in this context an additional criterion in the scheduling
process, which uses various techniques to decrease energy consumption, e.g.
workload consolidation, moving tasks between resources to reduce a num-
ber of running resources, dynamic power management, cutting down CPU
frequency, and others.

3.5. Application performance modeling

In general, DCworms implements user application models as objects de-
scribing computational, communicational as well as energy requirements and
profiles of the task to be scheduled. Additionally, simulator provides means
to include complex and specific application performance models during sim-
ulations. They allow researchers to introduce specific ways of calculating
task execution time. These models can be plugged into the simulation en-
vironment through a dedicated API and implementation of an appropriate
plugin. To specify the execution time of a task user can apply a number of
parameters, including:

• task length (number of CPU instructions)

• task requirements

• detailed description of allocated resources (processor type and param-
eters, available memory)

• input data size

• network parameters

11



Using these parameters developers can for instance take into account the
architectures of the underlying systems, such as multi-core processors, or
virtualization overheads, and their impact on the final performance of appli-
cations.

4. Modeling of energy consumption in DCworms

DCworms is an open framework in which various models and algorithms
can be investigated as presented in Section 3.5. In this section, we discuss
possible approaches to modeling that can be applied to simulation of energy-
efficiency of distributed computing systems. In general, to facilitate the
simulation process, DCworms provides some basic implementation of power
consumption, air throughput and thermal models. We introduce power con-
sumption models as examples and validate part of them by experiments in
real computing system (in Section 5). Description of thermal models and
corresponding experiments was presented in [2].

The most common questions explored by researchers who study energy-
efficiency of distributed computing systems is how much energy E do these
systems require to execute workloads. In order to obtain this value the
simulator must calculate values of power Pi(t) and load Li(t) in time for all
m computing nodes, i = 1..m. Load function may depend on specific load
models applied. In more complex cases it can even be defined as vectors of
different resource usage in time. In a simple case load can be either idle or
busy but even in this case estimation of job processing times pj is needed
to calculate total energy consumption. The total energy consumption of
computing nodes is given by (1):

E =
m∑
i

∫
t

Pi(t)dt (1)

Power function may depend on load and states of resources or even specific
applications as explained in Section 4.1. Total energy can be also completed
by adding constant power usage of components that does not depend on load
or state of resources.

In large computing systems which are often characterized by high com-
putational density, total energy consumption of computing nodes is not the
only result interesting for researchers. Temperature distribution is getting
more and more important as it affects energy consumption of cooling devices,

12



Figure 4: Average power usage with regard to CPU frequency - Linpack (green), Abinit
(purple), Namd (blue) and Cpuburn (red).

which can reach even half of a total data center energy use. In order to obtain
accurate values of temperatures heat transfer simulations based on the Com-
putational Fluid Dynamics (CFD) methods have to be performed. These
methods require as an input (i.e. boundary conditions) a heat dissipated
by IT hardware and air throughput generated by fans at servers’ outlets.
Another approach is based on simplified thermal models that without costly
CFD calculations provide rough estimations of temperatures. DCworms en-
ables the use of both approaches. In the former, the output of simulations
including power usage of computing nodes in time and air throughput at
node outlets can be passed to CFD solver. Details addressing this integra-
tion issues are introduced in [15].

4.1. Power consumption models

As stated above power usage of computing nodes depend on a number of
factors.

Generally, the power consumption of a modern CPU is given by the for-
mula:

P = C · V 2
core · f (2)

with C being the processor switching capacitance, Vcore the current P-

13



Figure 5: Power in time for the highest frequency

State’s core voltage and f the frequency. Based on the above equation it
is suggested that although the reduction of frequency causes an increase in
the time of execution, the reduction of frequency also leads to the reduction
of Vcore and thus the power savings from the P ∼ V 2

core relation outweigh
the increased computation time. However, experiments performed on several
HPC servers show that this dependency does not reflect theoretical shape
and is often close to linear as presented in Figure 4. This phenomenon can
be explained by impact of other component than CPU and narrow range of
available voltages. A good example of impact by other components is power
usage of servers with visible influence of fans as illustrated in Figure 5.

For these reasons, DCworms allows users to define dependencies between
power usage and resource states (such as CPU frequency) in the form of
tables or arbitrary functions using energy estimation plugins.

The energy consumption models provided by default can be classified into
the following groups, starting from the simplest model up to the more com-
plex ones. Users can easily switch between the given models and incorporate
new, visionary scenarios.

4.2. Static approach

Static approach is based on a static definition of resource power usage.
This model calculates the total amount of energy consumed by the com-
puting resource system as a sum of energy, consumed by all its components
(processors, disks, power adapters, etc.). More advanced versions of this ap-
proach assume definition of resource states along with corresponding power
usage. This model follows changes of resource power states and sums up
the amounts of energy defined for each state. In this case, specific values of
power usage are defined for all discrete n states as shown in (3):

S1 → P1, S2 → P2, ..., Sn → Pn (3)

14



Within DCworms we built in a static approach model that uses common
resource states that affect power usage which are the CPU power states.
Hence, with each node power state, understood as a possible operating state
(p-state), we associated a power consumption value that derives from the
averaged values of measurements obtained for different types of application.
We distinguish also an idle state. Therefore, the current power usage of the
node can be expressed as: P = Pidle + Pf where P denotes power consumed
by the node, Pidle is a power usage of node in idle state and Pf stands for
power usage of CPU operating at the given frequency level. Additionally,
node power states are taken into account to reflect no (or limited) power
usage when a node is off.

4.3. Resource load

Resource load model extends the static power state description and en-
hances it with real-time resource usage, most often simply the processor
load. In this way it enables a dynamic estimation of power usage based on
resource basic power usage and state (defined by the static resource descrip-
tion) as well as resource load. For instance, it allows distinguishing between
the amount of energy used by idle processors and processors at full load. In
this manner, energy consumption is directly connected with power state and
describes average power usage by the resource working in a current state. In
this case, specific values of power usage are defined for all pairs state and
load values (discretized to l values) as shown in (4):

(S1, L1)→ P11, (S1, L2)→ P12, ..., (S2, L1)→ P21, ..., (Sn, Ll)→ Pnl, (4)

A typical functional model of power usage can be based on theoretical
dependencies between power and parameters such as CPU frequency, voltage,
load, memory usage, etc. In this case CPU power usage for core i, Pi can be
given according to (2). Then, the total CPU power can be calculated as a
sum of utilized cores:

PCPU = Pidle +
num cores∑

i

Pi (5)

and the whole node power usage as a sum of CPU, memory and other
components (e.g., as defined in [14]):

15



P =

num cpus∑
i

PCPUi
+ PRAM + PHD + Pfan + PPSU (6)

Unfortunately, to verify this model and adjust it to the specific hardware,
power usage of particular subcomponents such as CPU or memory must be
measured. As this is usually difficult, other models, based on a total power
use, can be applied.

An example is a model applied in DCworms based on the real measure-
ments (see Section 5.3 for more details):

P = Pidle + L ∗ Pcpubase ∗ c(f−fbase)/100 + Papp, (7)

where P denotes power consumed by the node executing the given appli-
cation, Pidle is a power usage of node in idle state, L is the current utilization
level of the node, Pcpubase stands for power usage of fully loaded CPU work-
ing in the lowest frequency, c is the constant factor indicating the increase
of power consumption with respect to the frequency increase f is a current
frequency, fbase is the lowest available frequency within the given CPU and
Papp denotes the additional power usage derived from executing a particular
application (Papp is a constant appointed experimentally for each application
in order to extract the part of power consumption independent of the load
and specific for particular type of task).

4.4. Application specific

Application specific model allows expressing differences in the amount of
energy required for executing various types of applications at diverse comput-
ing resources. It considers all defined system elements (processors, memory,
disk, etc.), which are significant in total energy consumption. Moreover, it
also assumes that each of these components can be utilized in a different way
during the experiment and thus have different impact on total energy con-
sumption. To this end, specific characteristics of resources and applications
are taken into consideration. Various approaches are possible including mak-
ing the estimated power usage dependent on defined classes of applications,
ratio between CPU-bound and IO-bound operations, etc. In this case, power
usage is an arbitrary function of state, load, and application characteristics
as shown in (8):

f(S, L,A)→ P (8)

16



5. Experiments and evaluation

In this section, we present computational analysis that were conducted
to emphasize the role of modeling and simulation in studying computing
systems performance. To this end we evaluate the impact of energy-aware
resource management policies on overall energy-efficiency of specific work-
loads on heterogeneous resources. The following sections contain description
of the used system, tested application and the results of simulation experi-
ments conducted for the evaluated strategies.

5.1. Testbed description

To obtain values of power consumption that could be later used in DC-
worms environment to build the model and to evaluate resource management
policies we ran a set of applications / benchmarks on the physical testbed.
For experimental purposes we choose the Christmann high-density Resource
Efficient Cluster Server (RECS) system [3]. The single RECS unit consists
of 18 single CPU modules, each of them can be treated as an individual node
of PC class. Configuration of our RECS unit is presented in Table 1.

Nodes
Type Memory (RAM) Count
Intel i7 16 GB 8
AMD Fusion T40N 64 Bit 4 GB 6
Atom D510 64 Bit 2 GB 4

Table 1: RECS system configuration

The RECS system was chosen due to its heterogeneous platform with
very high density and energy efficiency that has a monitoring and controlling
mechanism integrated. The built-in and additional sensors allow monitoring
the complete testbed at a very fine granularity level without the negative
impact of the computing- and network-resources.

5.2. Evaluated applications

As mentioned, first we carried out a set of tests on the real hardware
used as a CoolEmAll testbed to build the performance and energy profiles of
applications. The following applications were taken into account:

17



Abinit [16] is a widely-used application for computational physics simu-
lating systems made of electrons and nuclei to be calculated within density
functional theory.

C-Ray [17] is a ray-tracing benchmark that stresses floating point per-
formance of a CPU. Our test is configured with the ’scene’ file at 16000x9000
resolution.

Linpack [19] benchmark is used to evaluate system floating point perfor-
mance. It is based on the Gaussian elimination methods that solve a dense
N by N system of linear equations.

Tar [20] it is a widely used data archiving software. In our tests the task
was to create one compressed file of Linux kernel (version 3.4), which is about
2.3 GB size, using bzip2.

FFTE [18] benchmark measures the floating-point arithmetic rate of dou-
ble precision complex one-dimensional Discrete Fourier Transforms of 1-, 2-,
and 3-dimensional sequences of length 2p ∗ 3q ∗ 5r. In our tests only one core
was used to run the application.

5.3. Models

Based on the measured values we evaluated three types of models that
can be applied, among others, to the simulation environment.

Static This model refers to the static approach presented in Section 4.1.
According to the measured values we created a resource power consumption
model that is based on a static definition of resource power usage.

Dynamic This model refers to the Resource load approach presented in
Section 4.1. Based on the measured values of the total node power usage for
various levels of load and frequencies of CPUs node power usage was defined
as in 7.

Table 2 and Table 3 contain values of Pcpubase and Papp, respectively,
obtained for the particular application and resource architectures. Lack of
the corresponding value means that the application did not run on the given
type of node.

Intel I7 AMD Fusion Atom D510
8 2 1

Table 2: Pcpubase values in Watts

Mapping This model refers to the Application specific approach pre-
sented in Section 4.1. However, in this model we applied the measured values

18



Node type
Application Intel I7 AMD Fusion Atom D510
Abinit 3.3 - -
Linpactiny 2.5 - 0.2
Linpack3gb 6 - -
C-Ray 4 1 0.05
FFT 3.5 2 0.1
Tar 3 2.5 0.5

Table 3: Papp values in Watts

for each application exactly to the power model. Neither dependencies with
load nor application profiles are modeled. Obviously this model is contami-
nated only with the inaccuracy of the measurements and variability of power
usage (caused by other unmeasured factors).

The following table (Table 4) contains the relative errors of the models
with respect to the measured values

Static Dynamic Mapping
13.74 10.85 0

Table 4: Power models error in %

Obviously, 0% error in the case of the Mapping model is caused by the
use of a tabular data, which for each application stores a specific power us-
age. Nevertheless, in all models we face possible deviations from the average
caused by power usage fluctuations not explained by variables used in models.
These deviations reached around 7% for each case.

For the experimental purposes we decided to use the latter model. Thus,
we introduce into the simulation environment exact values obtained within
our testbed, to build both the power profiles of applications as well as the
application performance models, denoting their execution times.

5.4. Methodology

Every chosen application / benchmark was executed on each type of node,
for all frequencies supported by the CPU and for different levels of paral-
lelization (number of cores). To eliminate the problem with assessing which
part of the power consumption comes from which application, in case when
more then one application is ran on the node, the queuing system (SLURM)

19



was configured to run jobs in exclusive mode (one job per node). Such con-
figuration is often used for at least dedicated part of HPC resources. The
advantage of the exclusive mode scheduling policy consists in that the job
gets all the resources of the assigned nodes for optimal parallel performance
and applications running on the same node do not influence each other. For
every configuration of application, type of node and CPU frequency we mea-
sure the average power consumption of the node and the execution time.
The aforementioned values were used to configure the DCworms environ-
ment providing energy and time execution models. Based on the models
obtained for the considered set of resources and applications we evaluated a
set of resource management strategies in terms of energy consumption needed
to execute four workloads varying in load intensity (10%, 30%, 50%, 70%).
The differences in the load were obtained by applying various intervals (3000,
1200, 720 and 520 seconds, respectively) related to submission times of two
successive tasks. In all cases the number of tasks was equal to 1000. More-
over, we differentiated the applications in terms of number of cores allocated
by them and their type. To generate a workload we used the DCworms
workload generator tool with the aforementioned characteristics gathered in
Table 5.

In all cases we assumed that tasks are scheduled and served in order
of their arrival (FIFO strategy) using relaxed backfilling (RB) approach,
with indefinite delay for the highest priority task. Moreover, all tasks were
assigned to nodes with the condition that they can be assigned only to nodes
of the type on which the application was able to run (in other words - we
had the corresponding value of power consumption and execution time).

5.5. Computational analysis

In the following section we present the results obtained for the workload
with load density equal to 70% in the light of five resource management and
scheduling strategies. The scheduling strategies were evaluated according to
two criteria: total energy consumption and maximum completion time of all
tasks (makespan). These evaluation criteria employed in our experiments
represent interests of various groups of stakeholders present in data centers.
Then we discuss the corresponding results received for workloads with other
density level.

20



Load intensity
Characteristic 10 30 50 70 Distribution
Task Count 1000 constant
Task Interval [s] 3000 1200 720 520 poisson

Number of cores to run

1 uniform - 30%
2 uniform - 30%
3 uniform - 10%
4 uniform - 10%
5 uniform - 5%
6 uniform - 5%
7 uniform - 5%
8 uniform - 5%

Application type

Abinit uniform - 20%
C-Ray uniform - 20%

Tar uniform - 20%
Linpack - 3Gb uniform - 10%
Linpack - tiny uniform - 10%

FFT uniform - 20%

Table 5: Workload characteristics

21



5.5.1. Random approach

The first considered by us policy was the Random (R) strategy in which
tasks were assigned to nodes in a random manner. The Random strategy is
only the reference one and will be later used to compare benefits in terms
of energy efficiency resulting from more sophisticated algorithms. Criteria
values are as follows: total energy usage: 46.883 kWh, workload com-
pletion time: 533 820 s.

In the second version of this strategy, which is getting more popular due
to energy costs, we switched off unused nodes to reduce the total energy con-
sumption. In the previous one, unused nodes are not switched off, which case
is still the primary one in many HPC centers. In this version of experiment
we neglected additional cost and time necessary to change the power state
of resources. As can be observed in the Figure 6, switching off unused nodes
led to decrease of the total energy consumption.

Figure 6: Comparison of energy usage for Random (left) and Random + switching off
unused nodes strategy (right)

As expected, with respect to the makespan criterion, both approaches
perform equally reaching workload completion time: 533 820 s. However,
the pure random strategy was significantly outperformed in terms of energy
usage, by the policy with additional node power management with its total
energy usage: 36.705 kWh. The overall energy savings reached 22%.

5.5.2. Energy optimization

The next two evaluated resource management strategies try to decrease
the total energy consumption (EO) caused by the execution of the whole
workload. They take into account differences in applications and hardware

22



profiles by trying to find the most energy efficient assignment. In the first
case we assumed that there is again no possibility to switch off unused nodes,
thus for the whole time needed to execute workload nodes consume at least
power for idle state. To obtain the minimal energy consumption, tasks have
to be assigned to the nodes for which the difference between energy usage
for the node running the application and and the node in the idle state is
minimal. The power consumption measured in idle state for three types of
nodes is gathered in the Table 6.

Type of processor within the node Power usage in idle state [W]
Intel i7 11.5
AMD Fusion 10
Atom D510 19

Table 6: Measured power of testbed nodes in idle state

As mentioned, we assign tasks to nodes minimizing the value of expres-
sion: (P − Pidle) ∗ exec time, where P denotes observed power of the node
running the particular application and exec time refers to the measured ap-
plication running time. Based on the application and hardware profiles, we
expected that Atom D510 would be the preferred node. Obtained schedule,
that is presented in the Gantt chart in Figure 7 confirmed our assumptions.
Atom D510 nodes are nearly fully loaded, while the least energy-favourable
AMD nodes are used only when other ones are busy.

This allocation strategy, leads to slight deterioration of makespan crite-
rion, resulting in workload completion time equal to 534 400 s. Never-
theless, the total energy usage is reduced, achieving: 46.305 kWh.

The next strategy is similar to the previous one, so making the assignment
of task to the node, we still take into consideration application and hardware
profiles, but in that case we assume that the system supports possibility of
switching off unused nodes. In this case the minimal energy consumption is
achieved by assigning the task to the node for which the product of power
consumption and time of execution is minimal. In other words we minimized
the following expression: P ∗ exec time. Contrary to the previous strategy,
we expected Intel I7 nodes to be allocated first. Generated Gantt chart is
consistent with our expectations.

Estimated total energy usage of the system is 30.568 kWh. As we
can see, this approach significantly improved the value of this criterion, com-
paring to the previous policies. Moreover, the proposed allocation strategy

23



Figure 7: Energy usage optimization strategy

Figure 8: Energy usage optimization + switching off unused nodes strategy

does not worsen the workload completion time criterion, for which the
resulting value is equal to 533 820 s.

24



5.5.3. Downgrading frequency

The last case considered by us is modification of the random strategy. We
assume that tasks do not have deadlines and the only criterion which is taken
into consideration, is the total energy consumption. In this experiment we
configured the simulated infrastructure for the lowest possible frequencies of
CPUs (LF). The experiment was intended to check if the benefit of running
the workload on less power-consuming frequency of CPU is not leveled by
the prolonged time of execution of the workload. The values of the evaluated
criteria are as follows: workload completion time: 1 065 356 s and total
energy usage: 77.109 kWh. As we can see, for the given load of the system
(70%), the cost of running the workload that requires almost twice more
time, can not be compensate by the lower power draw. Moreover, as it
can be observed on the charts in Figure 9, the execution times on the slowest
nodes (Atom D510) visibly exceeds the corresponding values on other servers.

Figure 9: Frequency downgrading strategy

As we were looking for the trade-off between total completion time and

25



energy usage, we were searching for the workload load level that can benefit
from the lower system performance in terms of energy-efficiency. For the
frequency downgrading policy, we noticed the improvement on the energy
usage criterion only for the workload resulting in 10% system load. For this
threshold we observed that slowdown in task execution does not affect the
subsequent tasks in the system and thus the total completion time of the
whole workload.

Figure 10 shows schedules obtained for Random and Random + lowest
frequency strategy.

Figure 10: Schedules obtained for Random strategy (left) and Random + lowest frequency
strategy (right) for 10% of system load

5.6. Discussion

The following tables Table 7 and Table 8 contain the values of evalua-
tion criteria (total energy usage and makespan respectively) gathered for all
investigated workloads.

Strategy
Load R R+NPM EO EO+NPM R+LF
10% 241.337 37.811 239.667 25.571 239.278
30% 89.853 38.059 88.823 25.595 90.545
50% 59.112 36.797 58.524 26.328 76.020
70% 46.883 36.705 46.305 30.568 77.109

Table 7: Energy usage [kWh] for different level of system load. R - Random, R+NPM
- Random + node power management, EO - Energy optimization, EO+NPM - Energy
optimization + node power management, R+LF - Random + lowest frequency

26



Strategy
Load R R+NPM EO EO+NPM R+LF
10% 3 605 428 3 605 428 3 605 428 3 605 428 3 622 968
30% 1 214 464 1 214 464 1 215 044 1 200 807 1 275 093
50% 729 066 729 066 731 126 721 617 1 049 485
70% 533 820 533 820 534 400 533 820 1 065 356

Table 8: Makespan [s] for different level of system load. R - Random, R+NPM - Random
+ node power management, EO - Energy optimization, EO+NPM - Energy optimization
+ node power management, R+LF - Random + lowest frequency

Referring to the Table 7, one should easily note that gain from switching
off unused nodes decreases with the increasing workload density. In gen-
eral, for the highly loaded system such policy does not find an application
due to the cost related to this process and relatively small benefits. An-
other interesting conclusion, refers to the poor result for Random strategy
with downgrading the frequency approach. The lack of improvement on the
energy usage criterion for higher system load can be explained by the rel-
atively small or no benefit obtained for prolonging the task execution, and
thus, maintaining the node in working state. The cost of longer workload
completion can not be compensate by the very little energy savings derived
from the lower operating state of node. The greater criteria values for the
higher system load are the result of greater time space between submission
of successive tasks, and thus longer workload execution. Based on Table 8,
one should note that differences in workload completion times are relatively
small for all evaluated policies, except Random + lowest frequency approach.
We also demonstrated differences between power usage models. They span
from rough static approach to accurate application specific models. How-
ever, the latter can be difficult or even infeasible to use, as it requires real
measurements for specific applications beforehand. This issue can be par-
tially resolved by introducing application profiles and classification, which
can deteriorate the accuracy though. This issue is begin studied more deeply
within CoolEmAll project.

6. Conclusions and future work

In this paper we presented a Data Center Workload and Resource Man-
agement Simulator (DCworms) which enables modeling and simulation of

27



computing infrastructures to estimate their performance, energy consump-
tion, and energy-efficiency metrics for diverse workloads and management
policies. DCworms provides broad options of customization and combines
detailed applications and workloads modeling with simulation of data cen-
ter resources including their power usage and thermal behavior. We shown
its energy-efficiency related features and proposed three methods of power
usage modeling: static (fully defined by resource state), dynamic (defined
by a function of parameters such as CPU frequency and load), and mapping
(based on power usage of specific applications). We compared results of simu-
lations to measurements of real servers and shown differences in accuracy and
usability of these models. We also demonstrated DCworms capabilities to
implement various resource management policies including workload schedul-
ing and node power management. The experimental studies we conducted
shown that their impact on overall energy-efficiency depends on a type of
servers, their power usage in idle time, possibility of switching off nodes as
well as level of load. DCworms is a part of the Simulation, Visualisation
and Decision Support (SVD) Toolkit being developed within the CoolEmAll
project. The aim of this toolkit is, based on data center building blocks de-
fined by the project, to analyze energy-efficiency of data centers taking into
account various aspects such as heterogenous hardware architectures, appli-
cations, management policies, and cooling. DCworms will take as an input
the open models of the data center building blocks and application profiles.
DCworms will be applied to evaluation of resource management approaches.
These policies may include a wide spectrum of energy-aware strategies such
as workload consolidation, dynamic switching off nodes, DVFS and thermal-
aware methods. Output of simulations will include distribution of servers’
power usage in time along with estimations of server outlets air flow. These
data will be passed to Computational Fluid Dynamics (CFD) simulations us-
ing OpenFOAM solver and to advanced 3D visualization. In this way users
will be able to study energy-efficiency of a data center from a detailed analysis
of workloads and policies to the impact on heat transfer and overall energy
consumption. Thus, future work on DCworms will focus on more precise
power, air-throughput, and thermal models. Additional research directions
will include modeling application execution phases, adding predefined com-
mon HPC and cloud management policies and application performance and
resource power models.

28



Acknowledgement

The results presented in this paper are partially funded by the European
Commission under contract 288701 through the project CoolEmAll and by
grants from Polish National Science Center: a grant under award number
636/N-COST/09/2010/0 and a grant under award number 5790/B/T02/2010/38.

References

[1] A. Berl, E. Gelenbe, M. di Girolamo, G. Giuliani, H. de Meer, M.-Q.
Dang, K. Pentikousis. Energy-Efficient Cloud Computing. The Com-
puter Journal, 53(7), 2010.

[2] M. vor dem Berge, G. Da Costa, M. Jarus, A. Oleksiak, W. Piatek, E.
Volk. Modeling Data Center Building Blocks for Energy-efficiency and
Thermal Simulations. 2nd International Workshop on Energy-Efficient
Data Centres, Berkeley, 2013.

[3] M. vor dem Berge, G. Da Costa, A. Kopecki, A. Oleksiak, J-M. Pierson,
T. Piontek, E. Volk, S. Wesner. Modeling and Simulation of Data Center
Energy-Efficiency in CoolEmAll. Energy Efficient Data Centers, Lecture
Notes in Computer Science Volume 7396, 2012, pp 25-36.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya.
CloudSim: A Toolkit for Modeling and Simulation of Cloud Comput-
ing Environments and Evaluation of Resource Provisioning Algorithms,
Software: Practice and Experience (SPE), Volume 41, Number 1, Pages:
23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January, 2011.
Modeling Data Center Building Blocks for Energy-efficiency and Ther-
mal Simulations. Micha Vor Dem Berge, Georges Da Costa, Mateusz
Jarus, Ariel Oleksiak, Wojciech Pitek and Eugen Volk

[5] http://dcsg.bcs.org/welcome-dcsg-simulator

[6] http://www.datacenterdynamics.com/blogs/ian-bitterlin/it-does-more-
it-says-tin%E2%80%A6

[7] E. Gelenbe, C. Morfopoulou. Power savings in packet networks via opti-
mised routing. Mobile Networks and Applications, 17(1):152159, Febru-
ary 2012.

29



[8] G. L. T. Chetsa, L. Lefévre, J-M. Pierson, P. Stolf, G. Da Costa.
DNA-inspired Scheme for Building the Energy Profile of HPC Systems.
In: International Workshop on Energy-Efficient Data Centres, Madrid,
Springer, 2012.

[9] A. Kipp, L. Schubert, J. Liu, T. Jiang, W. Christmann, M. vor dem
Berge. Energy Consumption Optimisation in HPC Service Centres, Pro-
ceedings of the Second International Conference on Parallel, Distributed,
Grid and Cloud Computing for Engineering, B.H.V. Topping and P.
Iványi, (Editors), Civil-Comp Press, Stirlingshire, Scotland, 2011.

[10] D. Kliazovich, P. Bouvry, and S. U. Khan, A Packet-level Simulator of
Energy-aware Cloud Computing Data Centers, Journal of Supercom-
puting, vol. 62, no. 3, pp. 1263-1283, 2012.

[11] S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek and J.
Weglarz, GSSIM - a Tool for Distributed Computing Experiments, Sci-
entific Programming Journal, vol. 19, no. 4, pp. 231-251, 2011.

[12] M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, Energy-aware simu-
lations with GSSIM. Proceedings of the COST Action IC0804 on Energy
Efficiency in Large Scale Distributed Systems, 2010, pp. 55-58.

[13] J. Koomey. 2008. Worldwide electricity used in data centers. Environ-
mental Research Letters. vol. 3, no. 034008. September 23.

[14] O. Mämmelä, M. Majanen, R. Basmadjian, H. De Meer, A. Giesler, W.
Homberg, Energy-aware job scheduler for high-performance computing,
Computer Science - Research and Development, November 2012, Volume
27, Issue 4, pp 265-275.

[15] U. Woessner, E. Volk, G. Gallizo, M. vor dem Berge, G. Da Costa, P.
Domagalski, W. Piatek, J-M. Pierson. (2012) D2.2 Design of the CoolE-
mAll simulation and visualisation environment - CoolEmAll Deliverable,
http://coolemall.eu

[16] Abinit. http://www.abinit.org/, 2013.

[17] C-ray ray-tracing benchmark. http://code.google.com/p/cray/, 2013.

[18] FFTE: A Fast Fourier Transform Package. http://www.ffte.jp/, 2013.

30



[19] Linpack. http://www.netlib.org/linpack/, 2013.

[20] Tar data archiving software. http://www.gnu.org/software/tar/, 2013.

[21] http://gwa.ewi.tudelft.nl/

[22] https://computing.llnl.gov/linux/slurm/

[23] Parallel Workload Archive, http://www.cs.huji.ac.il/labs/parallel/workload/

[24] http://www.adaptivecomputing.com/products/open-source/torque/

[25] Colt Modular Data Centre, http://www.colt.net/uk/en/products-
services/data-centre-services/modular-data-centre-en.htm

[26] The CoolEmAll project website, http://coolemall.eu

[27] EcoCooling, http://www.ecocooling.org

[28] Future Facilities, http://www.futurefacilities.com/

[29] The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE,
http://www.thegreengrid.org/Global/Content/white-papers/The-
Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

[30] SGI ICE Cube Air, http://www.sgi.com/products/data center/ice cube air/

31


