Poznan Supercomputing
and

Networking Center

DRMAA implementation

for
IBM LoadLeveler

Michat Mattoka

michal.matloka@student.put.poznan.pl

Date: June 30, 2010, Poznan



Contents

1 Intr ion) 1
[2" Tnput Documents| 1
[B_Testbed 2
4 Mapping of DRMAA interface on LoadLeveler API| 2
4.1 DRMAA job attributes mapping to LoadLeveler command file keywords| . . . . .. 2
4.2 DRMAA states mapping| . . . . . .. ... ... 2
4.2.1 States given by drmaa_job_ps| . . . . . . . ... ... 2

4.2.2 States acquired by monitor_program . . . . . . ... ... ......... 3

4.3 drmaa_control operations mapping|. . . . . . . ... ... 4
4.4 Feasibility study, getting exit status and signals| . . . .. ... ... ... ...... 4

[ Test LoadLeveler programs| 4
O>.1 Run job and wait foritsend|. . . . . . ... ..o Lo 4
5.2 Run bulk jobs| . . . . . .. 4
5.3  Check job status|. . . . . . . . .. 5
5.4 Control job|. . . . . . . . 5

|6 DRMAA library implementation using DRMAA Utils| 5
I/__End User Manual 5
18 DRMAA testsuitel 5
[8.1 Checkpointing| . . . . . . .. . ... 5

|9  Scalability testsuite| 6

1 Introduction

PSNC DRMAA for LoadLeveler is an implementation of Open Grid Forum DRMAA 1.0 (Distributed
Resource Management Application API) specification for submission and control of jobs to IBM
Tivoli LoadLeveler. Using DRMAA, grid applications builders, portal developers and ISVs can use
the same high-level API to link their software with different cluster/resource management systems.

This software also enables the integration of SMOA Computing with the underlying LoadLeveler
system for remote multi-user job submission and control over Web Services.

2 Input Documents

e DRMAA 1.0 Grid Recommendation '
http://www.ogf.org/documents/GFD.133.pdf

e DRMAA C Binding v1.0
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docmanl.
root.ggf_13/docb5545

e IBM LoadLeveler Documentation
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246038.htm170penDocument

e LONI Documentation
https://docs.loni.org/wiki/Main_Page


http://www.ogf.org/documents/GFD.133.pdf
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docman.root.ggf_13/doc5545
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.drmaa-wg/docman.root.ggf_13/doc5545
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246038.html?OpenDocument
https://docs.loni.org/wiki/Main_Page

3 Testbed

LONI (Louisiana Optical Network Initiative) LoadLeveler clusters were used during the work.

4 Mapping of DRMAA interface on LoadLeveler API

4.1

DRMAA job attributes mapping to LoadLeveler command file keywords

IBM LoadLeveler uses command files for every submitted job. This affects both LL command
line and LL API. Because of that for every submitted job is created temporary command file
/tmp/drmaa_cmd_XXXXXX where every X is replaced by randomly chosen character so that generated
name is unique. After submission the file is deleted.

| DRMAA

LoadLeveler

Comment

drmaa_block_email

notification never

drmaa_deadline_time

OPTIONAL ATTRIBUTE

NOT IMPLEMENTED

drmaa_duration_hlimit

OPTIONAL ATTRIBUTE

NOT IMPLEMENTED

drmaa_duration_slimit

OPTIONAL ATTRIBUTE

NOT IMPLEMENTED

drmaa_error_path

error

drmaa_input_path

input

drmaa_job_category

library configuration, putting
appropriate line from
.11_drmaa.conf into cmd file

Simplified syntax "@keywordl
= valuel value2 Qkeyword2 =
value3"

drmaa_job_name

job_name

drmaa_join_files

same values of error and
output

drmaa_js_state

hold

drmaa_native_specification

putting argument
value into cmd file

Simplified syntax "@keywordl
= valuel value2 Qkeyword2 =
value3"

drmaa_output_path output
drmaa_remote_command executable
drmaa_start_time startdate

drmaa_transfer_files

OPTIONAL ATTRIBUTE

NOT IMPLEMENTED, practically
not used because each cluster
has shared file system

drmaa_v_argv arguments
drmaa_v_email notify_user
drmaa_v_env environment

drmaa_wct_hlimit

wall_clock_limit

drmaa_wct_slimit

wall_clock_limit

value given after comma

drmaa_wd

initialdir

4.2 DRMAA states mapping

4.2.1

States given by drmaa_job_ps

The DRMAA states list was compared with LoadLeveler states retrieved by APl and with those
returned by 119 command.



] LoadLeveler \ DRMAA Comment

Canceled DRMAA_PS_FAILED
Checkpointing DRMAA_PS_RUNNING
Completed DRMAA_PS_DONE
Complete Pending Transient state
Deferred DRMAA_PS_QUEUED_ACTIVE
[dle DRMAA_PS_QUEUED_ACTIVE Used with hold_type. If value 1=0
then we have DRMAA_PS_X_ON_HOLD
Not Queued DRMAA_PS_FAILED
Not run DRMAA_PS_FAILED
Pending Transient state
Preempted DRMAA_PS_SYSTEM_SUSPENDED | SYSTEM_SUSPENDED because
normal user cannot suspend a job
Preempt Pending Transient state
Rejected DRMAA_PS_FAILED
Rejected Pending Transient state
Removed DRMAA_PS_FAILED
Remove Pending Transient state
Resume Pending Transient state
Running DRMAA_PS_RUNNING
Starting Transient state
Syﬂenﬁlﬁom DRMAA_PS_SYSTEM_ON_HOLD
Terminated DRMAA_PS_FAILED
User & System Hold | DRMAA_PS_USER_SYSTEM_ON_HOLD
User Hold DRMAA_PS_USER_0ON_HOLD
Vacated DRMAA_PS_FAILED Il drmaa option:
terminate_job_on_vacated - if true
when job will get vacated state will
be killed
Vacate Pending Transient state

For transient states is returned:
e last stored state

e DRMAA_PS_QUEUED_ACTIVE when no state where previously remembered is returned.

4.2.2 States acquired by monitor_program

LoadLeveler notifies about submitted job state changes by monitor_program (The monitor_program

path can be specified as 11_submit command argument). The monitor_program shipped with the

DRMAA library communicates with DRMAA library main process by a UNIX socket (/tmp/drmaa_socket_XXXXXX
for security reasons 0600).

| LoadLeveler | DRMAA \ Comment \

JOB_STARTED DRMAA_PS_RUNNING
JOB_COMPLETED DRMAA_PS_DONE
JOB_VACATED DRMAA_PS_FAILED Option terminate_job_on_vacated
JOB_REJECTED DRMAA_PS_FAILED
JOB_REMOVED DRMAA_PS_FAILED
JOB_NOTRUN DRMAA_PS_FAILED




4.3 drmaa_control operations mapping

] DRMAA \ LoadLeveler \ Comments \
DRMAA_CONTROL_SUSPEND 11_preempt_jobs - PREEMPT_STEP Administrators only
DRMAA_CONTROL_RESUME 11_preempt_jobs - RESUME_STEP Administrators only

DRMAA_CONTROL_HOLD 11_control - LL_CONTROL_HOLD_USER
DRMAA_CONTROL_RELEASE 11_control - LL_CONTROL_HOLD_RELEASE
DRMAA_CONTROL_TERMINATE 11_terminate_job

4.4 Feasibility study, getting exit status and signals

monitor_program gives exit status. However its value needs modifications before using in DRMAA.
There are two possibilities:

e exit_status >> 8;
signal_number >> 16;

e Using sys/wait.h macros

— WIFEXITED
— WEXITSTATUS
— WIFSIGNALED
— WTERMSIG

— WCOREDUMP

All this macros were used in final LL DRMAA implementation.

5 Test LoadLeveler programs

These programs realizes basic DRMAA functionalities using LoadlLeveler APl. They have been
written in order to test LL API specific ascpects and check is it possible to implement DRMAA
library based on LL API. Source codes are available at LL DRMAA SVN, experiments folder.

http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/11/experiments/

5.1 Run job and wait for its end

This program creates simple command file, submits job with monitor_program location set as
its argument and reads FIFO pipe (communication with monitor_program). Final version of LL
DRMAA uses Unix Sockets. Data retrieved by monitor_program:

argument given by submit function
e job_id
e job_state

e exit_status

5.2 Run bulk jobs

Submitting bulk jobs is possible by adding additional @queue keywords in job command file. It is
also necessary to replace DRMAA_PH_INCR, DRMAA_PH_WD, DRMAA_PH_HD.


http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/ll/experiments/

5.3 Check job status

This program tests the following LL routines:
e 11_query
e 11 _set_request
e 11_get_objs
e 11 _get_data
e 11 _next_obj

Those functions can not retrieve informations about jobs which have ended.

5.4 Control job

Realized according to proposed mapping.

6 DRMAA library implementation using DRMAA Utils

Library was implemented in C based on the implementation of DRMAA for LSF ([http://gforge.
man.poznan.pl/svn/smoaincubator/drmaa/lsf/) and tools like GNU Compiler Collection and GNU
Project Debugger accordingly to created mappings.

7 End User Manual

Documentation can be found in doc folder in the library package.

8 DRMAA testsuite

Library covers all DRMAA 1.0 specification with exceptions listed below. It was successfully tested
with IBM Tivoli LoadLeveler 3.5.0.5 on AIX 0S and passes 43/44 tests of the official DRMAA
test-suite. All mandatory and nearly all optional job attributes (except job run duration soft limit,
job run duration hard limit, drmaa_transfer_files and drmaa_deadline_time) are implemented.

Known limitations:

e drmaa_control() - DRMAA_CONTROL_RESUME and DRMAA_CONTROL_SUSPEND are not implemented
as suspending jobs in LoadlLeveler requires administrator privileges.

There are plans, depending on the end users feedback, to implement the RESUME/SUSPEND func-
tionality by leveraging the checkpointing mechanism.

8.1 Checkpointing

Because LoadLeveler does not allow non-administrators to suspend their jobs appeared idea to use
LL checkpointing mechanism. However this functionality has some limitations:

e job can not be in idle or hold states
e job must have its all descriptors closed
e it is only available under AIX 0S

Using LoadLeveler APl user might prepare his/her application for checkpointing. 11_set_ckpt_callbacks
gives possibility to define functions which will be performed when specific event occurs

e checkpoint - need of saving and closing descriptors
e resume from checkpoint - open descriptors
e restart

This functionality was not implemented in this version of the library.


http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/lsf/
http://gforge.man.poznan.pl/svn/smoaincubator/drmaa/lsf/

9 Scalability testsuite

A dedicated test program was written for scalability testing purposes. It simulates SMOA Computing
service under continious workload.
This program takes 4 arguments: SUB_INT, SLEEP_TIME, POLL_INTERVAL, WAIT_INTERVAL and starts

3 threads:
o first thread submits sleep job with SLEEP_TIME parameter
e second thread every POOL_INTERVAL checks status of every job

e third thread with WAIT_INTERVAL (timeout) and SESSION_ANY (job) parameters runs drmaa_wait
and updates finished jobs list.



	Introduction
	Input Documents
	Testbed
	Mapping of DRMAA interface on LoadLeveler API
	DRMAA job attributes mapping to LoadLeveler command file keywords
	DRMAA states mapping
	States given by drmaa_job_ps
	States acquired by monitor_program

	 drmaa_control operations mapping
	Feasibility study, getting exit status and signals

	Test LoadLeveler programs
	Run job and wait for its end
	Run bulk jobs
	Check job status
	Control job

	DRMAA library implementation using DRMAA Utils
	End User Manual
	DRMAA testsuite
	Checkpointing

	Scalability testsuite

