Changeset 727 for papers/SMPaT-2012_DCWoRMS/elsarticle-DCWoRMS.tex
- Timestamp:
- 12/31/12 09:39:40 (12 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
papers/SMPaT-2012_DCWoRMS/elsarticle-DCWoRMS.tex
r725 r727 573 573 \subsubsection{Frequency scaling} 574 574 575 The last considered by us case is modification of the random strategy. We assume that tasks do not have deadlines and the only criterion which is taken into consideration is the total energy consumption. In this experiment we configured the simulated infrastructure for the lowest possible frequencies of CPUs. The experiment was intended to check if the benefit of running the workload on less power-consuming frequency of CPU is not leveled by the prolonged time of execution of the workload. The values of the evaluated criteria are as follows: \textbf{workload completion time}: 1 065 356 s and \textbf{total energy usage}: 77,109 kWh. As we can see, for the given load of the system (70\%), the cost of running the workload that requires almost twice more time, can not be compensate by the lower power draw. Moreover, as it can be observed on the charts in Figure~\ref{fig:70dfs} the execution times on the slowest nodes (Atom D510) visibly exceeds the corresponding values on other servers575 The last considered by us case is modification of the random strategy. We assume that tasks do not have deadlines and the only criterion which is taken into consideration is the total energy consumption. In this experiment we configured the simulated infrastructure for the lowest possible frequencies of CPUs. The experiment was intended to check if the benefit of running the workload on less power-consuming frequency of CPU is not leveled by the prolonged time of execution of the workload. The values of the evaluated criteria are as follows: \textbf{workload completion time}: 1 065 356 s and \textbf{total energy usage}: 77,109 kWh. As we can see, for the given load of the system (70\%), the cost of running the workload that requires almost twice more time, can not be compensate by the lower power draw. Moreover, as it can be observed on the charts in Figure~\ref{fig:70dfs}, the execution times on the slowest nodes (Atom D510) visibly exceeds the corresponding values on other servers. 576 576 577 577 \begin{figure}[h!] … … 586 586 587 587 588 Figure~\ref{fig:dfsComp} shows schedules obtained for Random and DFS strategy. One should easily note that the 588 Figure~\ref{fig:dfsComp} shows schedules obtained for Random and DFS strategy. 589 590 589 591 \begin{figure}[h!] 590 592 \centering
Note: See TracChangeset
for help on using the changeset viewer.